数据埋点的字段

上网导航 2023-08-16 373 0条评论
摘要: 本文作者从工作实践出发,梳理总结了关于数据埋点的相关基本知识,与大家分享。产品汪每天都在和数据打交道,你知道数据来自哪里吗?移动app端内的用户行为数据大多来自埋点...

本文作者从工作实践出发,梳理总结了关于数据埋点的相关基本知识,与大家分享。

产品汪每天都在和数据打交道,你知道数据来自哪里吗?

移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。

埋点类型

根据埋点方式,可以区分为:

手动埋点半自动埋点全自动埋点

秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定制需求难满足,成本较低;偏手动的,能满足个性化需求,但容易出错和疏漏,成本较高。

上报方式:

客户端上报服务端上报

客户端能记录一些通用页面PV、UV、点击等信息,但更多细节无法覆盖,用户购买了什么、订单金额、成交单数,用户看了哪个视频、视频物理时长是多少等信息则需要服务端回传,服务端上报有上线灵活、不随版本、丢失率较低的优点。

客户端上报埋点数据流转如下图:

数据埋点的字段

(客户端上报埋点数据流转)

埋点在个性化推荐系统(详见下一篇推送)中扮演着先头兵的角色,采集的数据的准确性将直接影响策略方向。

端数据

由于不同端的用户具有不同用户特征,往往会有不同的做功点,因此,采集数据时需要区分端数据,可以通过app_id区分产品不同端,如iOS、Android、iPad、PC各端。

埋点事件

如果作为数据分析师,思考角度较高,输出的埋点需要有“可扩展、可维护、易用性、高效性”,字少事大的典型。产品汪可降低要求,只要能看懂埋点文档,正确提出埋点需求、知道哪些数据对应哪些埋点即可。

数据埋点的字段

(埋点文档示例)

根据场景,同一属性的行为往往会归为同一类埋点,成为“同一事件”,同一事件下会有相应的扩展字段来承接相关的细节信息。

数据埋点的字段

事件字段

以资讯app(如今日头条、腾讯新闻、网易新闻)为例,按漏斗思维和用户的行为路径拆解,有哪些数据可能需要获取?

打开APP人数(客户端登录损耗)->首页/栏目访问人数(访问占比)->刷新或点击人数(刷新或点击人数占比)->点击人数(点击率)->阅读时长/停留时长(读完率、阅读进度)->跟帖/收藏/分享等互动行为(互动率)->回流人数(回流率、病毒传播系数)

以上环节怎么对应上埋点?

根据行为属性,埋点事件大致分为以下几类,并不唯一:

数据埋点的字段

埋点事件下的信息怎么看?如item_id:”114774”,冒号前是字段(key),冒号后是值(value),//后的是注释。

以视频浏览事件(_vdE)为例:

数据埋点的字段

字段注意点和应用场景:

item_id:内容id,易错传为序列idtype:内容类型,如图文、视频、音频,可区分内容类型作分析referer_id:上一页面内容id,可用于相关推荐业务的分析_pt/_pi/_pm系列:定位页面和模块,可用于不同业务线的分析,例如首页、要问频道、正文页等_pre_系列:追踪了上一级页面,可用于用户行为路径分析

除了关注字段的定义和场景外,还需留意上报时机,定义尽可能周全,就以此视频浏览事件为例:

页面退出(销毁)时:点击返回等切换到其他视频:点击上下集,点击相关视频等按home键退出时锁屏时app杀死时

以刷新事件(_fsE)为例:

数据埋点的字段

direction:可供产品汪区分上拉、下拉作刷新行为的分析。你可能会发现,除自动刷新外,大部分用后喜欢上拉刷新,但下拉刷新的广告位更值钱(有问题存在就有工作要做了)。auto_type:在新session,打开app到达首页会有一次自动刷新(即用户没有手动操作),可用于分析用户主动刷新的行为。

文章版权及转载声明:

作者:上网导航本文地址:https://www.90xe.com/post/2042.html发布于 2023-08-16
文章转载或复制请以超链接形式并注明出处技术导航

分享到:

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏